1. Hai đường thẳng song song
a) Định nghĩa: a b a b P
a b
ì , Ì ( )
í
P ỵ Ç = Ỉ
b) Tính chất
·
( ) ( ) ( )
( ) ( ) , ,
( ) ( )
( ) ( )
P Q R
P Q a a b c đồng qui
P R b a b c
Q R c
ì ¹ ¹
Ç =
í Ç = Þ
ỵ Ç =
P P
·
( ) ( )
( ) ,( )
( )
P Q d
d a b
P a Q b
d a d b
a b
ì Ç =
í ỵ P Þ P P º º
·
,
a b
a b
a c b c
ì ¹
í Þ
ỵ P P P
2. Đường thẳng và mặt phẳng song song
a) Định nghĩa: d // (P) d Ç (P) = Ỉ
b) Tính chất
·
( ), ' ( )
( )
'
d P d P
d P
d d
ì Ì
í Þ
ỵ P P · ì í ỵ(d P QP) ( ) d,(Q) Ç = ( ) P a Þ d a P
·
( ) ( )
( ) ,( )
P Q d
d a
P a Q a
ì Ç =
í Þ
ỵ P P
TRẦN SĨ TÙNG ---- & ---- BÀI TẬP HÌNH HỌC 12 TẬP 1 ÔN THI TỐT NGHIỆP THPT & ĐẠI HỌC Năm 2009 Trần Sĩ Tùng Khối đa diện Trang 1 1. Hai đường thẳng song song a) Định nghĩa: a b Pa b a b , ( )ì ÌÛ í Ç = Ỉỵ P b) Tính chất · ( ) ( ) ( ) ( ) ( ) , , ( ) ( ) ( ) ( ) P Q R P Q a a b c đồng qui P R b a b c Q R c ì ¹ ¹ ïï éÇ = Þí êÇ = ëï Ç =ïỵ P P · ( ) ( ) ( ) ,( ) ( ) P Q d d a bP a Q b d a d ba b ì Ç =ï éÉ É Þí ê º ºëïỵ P P P · , a b a b a c b c ì ¹ Þí ỵ PP P 2. Đường thẳng và mặt phẳng song song a) Định nghĩa: d // (P) Û d Ç (P) = Ỉ b) Tính chất · ( ), ' ( ) ( ) ' d P d P d P d d ì Ë Ì Þí ỵ PP · ( ) ( ) ,( ) ( ) d P d a Q d Q P a ì Þí É Ç =ỵ P P · ( ) ( ) ( ) ,( ) P Q d d a P a Q a ì Ç = Þí ỵ PP P 3. Hai mặt phẳng song song a) Định nghĩa: (P) // (Q) Û (P) Ç (Q) = Ỉ b) Tính chất · ( ) , ( ) ( ) ( ), ( ) P a b a b M P Q a Q b Q ì Éï Ç = Þí ïỵ P P P · ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) P Q P R P Q Q R ì ¹ï Þí ïỵ P P P · ( ) ( ) ( ) ( ) ( ) ( ) Q R P Q a a b P R b ìï Ç = Þí ï Ç =ỵ P P 4. Chứng minh quan hệ song song a) Chứng minh hai đường thẳng song song Có thể sử dụng 1 trong các cách sau: · Chứng minh 2 đường thẳng đó đồng phẳng, rồi áp dụng phương pháp chứng minh song song trong hình học phẳng (như tính chất đường trung bình, định lí Talét đảo, ) · Chứng minh 2 đường thẳng đó cùng song song với đường thẳng thứ ba. · Áp dụng các định lí về giao tuyến song song. b) Chứng minh đường thẳng song song với mặt phẳng Để chứng minh ( )d PP , ta chứng minh d không nằm trong (P) và song song với một đường thẳng d¢ nào đó nằm trong (P). c) Chứng minh hai mặt phẳng song song Chứng minh mặt phẳng này chứa hai đường thẳng cắt nhau lần lượt song song với hai đường thẳng trong mặt phẳng kia. CHƯƠNG 0 ÔN TẬP HÌNH HỌC KHÔNG GIAN 11 I. QUAN HỆ SONG SONG Khối đa diện Trần Sĩ Tùng Trang 2 1. Hai đường thẳng vuông góc a) Định nghĩa: a ^ b Û ¶( ) 0, 90a b = b) Tính chất · Giả sử ur là VTCP của a, vr là VTCP của b. Khi đó . 0a b u v^ Û =r r . · b c a b a c ì ¤¤ Þ ^í ^ỵ 2. Đường thẳng và mặt phẳng vuông góc a) Định nghĩa: d ^ (P) Û d ^ a, "a Ì (P) b) Tính chất · Điều kiện để đường thẳng ^ mặt phẳng: , ( ), ( ) , a b P a b O d P d a d b ì Ì Ç = Þ ^í ^ ^ỵ · a b P b P a ( ) ( ) ì Þ ^í ^ỵ P · a b a b a P b P( ), ( ) ì ¹ Þí ^ ^ỵ P · P Q a Q a P ( ) ( ) ( ) ( ) ì Þ ^í ^ỵ P · P Q P Q P a Q a ( ) ( ) ( ) ) ( ) ,( ) ì ¹ Þ (í ^ ^ỵ P · a P b a b P ( ) ( ) ì Þ ^í ^ỵ P · a P a P a b P b ( ) ) ,( ) ì Ë Þ (í ^ ^ỵ P · Mặt phẳng trung trực của một đoạn thẳng là mặt phẳng vuông góc với đoạn thẳng tại trung điểm của nó. Mặt phẳng trung trực của đoạn thẳng là tập hợp các điểm cách đều hai đầu mút của đoạn thẳng đó. · Định lí ba đường vuông góc Cho ( ), ( )a P b P^ Ì , a¢ là hình chiếu của a trên (P). Khi đó b ^ a Û b ^ a¢ 3. Hai mặt phẳng vuông góc a) Định nghĩa: (P) ^ (Q) Û ·( ) 090P Q( ),( ) = b) Tính chất · Điều kiện để hai mặt phẳng vuông góc với nhau: ( ) ( ) ( ) ( ) P a P Q a Q ì É Þ ^í ^ỵ · ( ) ( ),( ) ( ) ( ) ( ), P Q P Q c a Q a P a c ì ^ Ç = Þ ^í Ì ^ỵ · ( ) ( ) ( ) ( ) , ( ) P Q A P a P a A a Q ì ^ï Ỵ Þ Ìí ï ' ^ỵ · ( ) ( ) ( ) ( ) ( ) ( ) ( ) P Q a P R a R Q R ì Ç =ï ^ Þ ^í ï ^ỵ 4. Chứng minh quan hệ vuông góc a) Chứng minh hai đường thẳng vuông góc Để chứng minh d a^ , ta có thể sử dụng 1 trong các cách sau: · Chứng minh góc giữa a và d bằng 900. · Chứng minh 2 vectơ chỉ phương của a và d vuông góc với nhau. · Chứng minh d b^ mà b aP . II. QUAN HỆ VUÔNG GÓC Trần Sĩ Tùng Khối đa diện Trang 3 · Chứng minh d vuông góc với (P) và (P) chứa a. · Sử dụng định lí ba đường vuông góc. · Sử dụng các tính chất của hình học phẳng (như định lí Pi–ta–go, ). b) Chứng minh đường thẳng vuông góc với mặt phẳng Để chứng minh d ^ (P), ta có thể chứng minh bởi một trong các cách sau: · Chứng minh d vuông góc với hai đường thẳng a, b cắt nhau nằm trong (P). · Chứng minh d vuông góc với (Q) và (Q) // (P). · Chứng minh d // a và a ^ (P). · Chứng minh d Ì (Q) với (Q) ^ (P) và d vuông góc với giao tuyến c của (P) và (Q). · Chứng minh d = (Q) Ç (R) với (Q) ^ (P) và (R) ^ (P). c) Chứng minh hai mặt phẳng vuông góc Để chứng minh (P) ^ (Q), ta có thể chứng minh bởi một trong các cách sau: · Chứng minh trong (P) có một đường thẳng a mà a ^ (Q). · Chứng minh ·( ) 0( ),( ) 90P Q = 1. Góc a) Góc giữa hai đường thẳng: a//a', b//b' Þ ¶( ) ·( ), ', 'a b a b= Chú ý: 00 £ ¶( )a b, £ 900 b) Góc giữa đường thẳng với mặt phẳng: · Nếu d ^ (P) thì ·( ),( )d P = 900. · Nếu ( )d P^ thì ·( ),( )d P = ·( ), 'd d với d¢ là hình chiếu của d trên (P). Chú ý: 00 £ ·( ),( )d P £ 900 c) Góc giữa hai mặt phẳng ·( ) ¶( )( ) ( ),( ) ,( ) a P P Q a b b Q ì ^ Þ =í ^ỵ · Giả sử (P) Ç (Q) = c. Từ I Ỵ c, dựng ( ), ( ), a P a c b Q b c ì Ì ^ í Ì ^ỵ Þ ·( ) ¶( )( ),( ) ,P Q a b= Chú ý: ·( )0 00 ( ),( ) 90P Q£ £ d) Diện tích hình chiếu của một đa giác Gọi S là diện tích của đa giác (H) trong (P), S¢ là diện tích của hình chiếu (H¢) của (H) trên (Q), j = ·( )( ),( )P Q . Khi đó: S¢ = S.cosj 2. Khoảng cách a) Khoảng cách từ một điểm đến đường thẳng (mặt phẳng) bằng độ dài đoạn vuông góc vẽ từ điểm đó đến đường thẳng (mặt phẳng). b) Khoảng cách giữa đường thẳng và mặt phẳng song song bằng khoảng cách từ một điểm bất kì trên đường thẳng đến mặt phẳng. c) Khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm bất kì trên mặt phẳng này đến mặt phẳng kia. III. GÓC – KHOẢNG CÁCH Khối đa diện Trần Sĩ Tùng Trang 4 d) Khoảng cách giữa hai đường thẳng chéo nhau bằng: · Độ dài đoạn vuông góc chung của hai đường thẳng đó. · Khoảng cách giữa một trong hai đường thẳng với mặt phẳng chứa đường thẳng kia và song song với đường thẳng thứ nhất. · Khoảng cách giữa hai mặt phẳng, mà mỗi mặt phẳng chứa đường thẳng này và song song với đường thẳng kia. 1. Hệ thức lượng trong tam giác a) Cho DABC vuông tại A, có đường cao AH. · 2 2 2AB AC BC+ = · 2 2AB BC BH AC BC CH. , .= = · 2 2 2 1 1 1 AH AB AC = + b) Cho DABC có độ dài ba cạnh là: a, b, c; độ dài các trung tuyến là ma, mb, mc; bán kính đường tròn ngoại tiếp R; bán kính đường tròn nội tiếp r; nửa chu vi p. · Định lí hàm số cosin: 2 2 2 2 2 22 22 2 2a =b c 2bc cosA; b c a ca B c a b ab C– . .cos ; .cos+ = + - = + - · Định lí hàm số sin: R C c B b A a 2 sinsinsin === · Công thức độ dài trung tuyến: 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 4 2 4a b c b c a c a b a b cm m m; ;+ + += - = - = - 2. Các công thức tính diện tích a) Tam giác: · cba hchbhaS .2 1. 2 1. 2 1 === · CabBcaAbcS sin 2 1sin. 2 1sin 2 1 === · R abcS 4 = · prS = · ( )( )( )S p p a p b p c= - - - · DABC vuông tại A: 2S AB AC BC AH. .= = · DABC đều, cạnh a: 2 3 4 aS = b) Hình vuông: S = a2 (a: cạnh hình vuông) c) Hình chữ nhật: S = a.b (a, b: hai kích thước) d) Hình bình hành: S = đáy ´ cao = ·AB AD sinBAD. . e) Hình thoi: · 1 2 S AB AD sinBAD AC BD. . .= = f) Hình thang: ( )hbaS . 2 1 += (a, b: hai đáy, h: chiều cao) g) Tứ giác có hai đường chéo vuông góc: 1 2 S AC BD.= IV. Nhắc lại một số công thức trong Hình học phẳng Trần Sĩ Tùng Khối đa diện Trang 5 1. Thể tích của khối hộp chữ nhật: V abc= với a, b, c là ba kích thước của khối hộp chữ nhật. 2. Thể tích của khối chóp: 1 3 đáy V S h.= với Sđáy là diện tích đáy, h là chiều cao của khối chóp 3. Thể tích của khối lăng trụ: đáyV S h.= với Sđáy là diện tích đáy, h là chiều cao của khối lăng trụ 4. Một số phương pháp tính thể tích khối đa diện a) Tính thể tích bằng công thức · Tính các yếu tố cần thiết: độ dài cạnh, diện tích đáy, chiều cao, · Sử dụng công thức để tính thể tích. b) Tính thể tích bằng cách chia nhỏ Ta chia khối đa diện thành nhiều khối đa diện nhỏ mà có thể dễ dàng tính được thể tích của chúng. Sau đó, cộng các kết quả ta được thể tích của khối đa diện cần tính. c) Tính thể tích bằng cách bổ sung Ta có thể ghép thêm vào khối đa diện một khối đa diện khác sao cho khối đa diện thêm vào và khối đa diện mới tạo thành có thể dễ tính được thể tích. d) Tính thể tích bằng công thức tỉ số thể tích Ta có thể vận dụng tính chất sau: Cho ba tia Ox, Oy, Oz không đồng phẳng. Với bất kì các điểm A, A’ trên Ox; B, B' trên Oy; C, C' trên Oz, ta đều có: OABC OA B C V OA OB OC V OA OB OC' ' ' . . ' ' ' = * Bổ sung · Diện tích xung quanh của hình lăng trụ (hình chóp) bằng tổng diện tích các mặt bên · Diện tích toàn phần của hình lăng trụ (hình chóp) bằng tổng diện tích xung quanh với diện tích các đáy. Bài 1. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Góc giữa mặt bên và mặt đáy bằng a (450 < a < 900). Tính thể tích hình chóp. HD: Tính h = 1 2 a tana Þ V a31 tan 6 = a Bài 2. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a 5 . Một mặt phẳng (P) đi qua AB và vuông góc với mp(SCD) lần lượt cắt SC và SD tại C¢ và D¢. Tính thể tích của khối đa diện ADD¢.BCC¢. HD: Ghép thêm khối S.ABC'D' vào khối ADD'.BCC' thì được khối SABCD Þ aV 35 3 6 = CHƯƠNG I KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG Khối đa diện Trần Sĩ Tùng Trang 6 Bài 3. Cho hình chóp tam giác S.ABC có SA = x, BC = y, các cạnh còn lại đều bằng 1. Tính thể tích hình chóp theo x và y. HD: Chia khối SABC thành hai khối SIBC và AIBC (I là trung điểm SA) Þ xyV x y2 24 12 = - - Bài 4. Cho tứ diện ABCD có các cạnh AD = BC = a, AC = BD = b, AB = CD = c. Tính thể tích tứ diện theo a, b, c. HD: Trong mp(BCD) lấy các điểm P, Q, R sao cho B, C, D lần lượt là trung điểm của PQ, QR, RP. Chú ý: VAPQR = 4VABCD = 1 6 AP AQ AR. . Þ V a b c b c a c a b2 2 2 2 2 2 2 2 22 ( )( )( ) 12 = + - + - + - Bài 5. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA = 2a và SA ^ (ABC).Gọi M và N lần lượt la ... ABC là tam giác cân đỉnh A. Trung tuyến AD = a. Cạnh bên SB tạo với đáy góc a và tạo với mp(SAD) góc b. a) Xác định các góc a, b. b) Chứng minh: SB2 = SA2 + AD2 + BD2. c) Tính diện tích toàn phần và thể tích khối chóp. HD: a) · ·SBA BSD;a b= = c) Stp = 2 2 2 2 2 2 1 2 2 2 a a sin(sin sin ) cos sin cos sin b a b a b a b + + - - V = 3 2 23 a sin .sin (cos sin ) a b a b- Bài 3. Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a. Mặt bên SAB là tam giác đều và vuông góc với đáy. Gọi H là trung điểm của AB và M là một điểm di động trên đường thẳng BC. a) Chứng minh rằng SH ^ (ABCD). Tính thể tích khối chóp SABCD. b) Tìm tập hợp các hình chiếu của S lên DM. c) Tìm khoảng cách từ S đến DM theo a và x = CM. HD: b) K thuộc đường tròn đường kính HD c) SK = 2 2 2 2 7 4 4 2 a a ax x a x - + + Bài 4. Trên đường thẳng vuông góc tại A với mặt phẳng của hình vuông ABCD cạnh a ta lấy điểm S với SA = 2a. Gọi B¢, D¢ là hình chiếu của A lên SB và SD. Mặt phẳng (AB¢D¢) cắt SC tại C¢. Tính thể tích khối chóp SAB¢C¢D¢. HD: 8 15 SAB C SABC V V ¢ ¢ = Þ VSAB¢C¢D¢ = 316 45 a Bài 5. Cho hình chóp SABCD có đáy ABCD là hình bình hành. Một mặt phẳng (P) cắt SA, SB, SC, SD lần lượt tại A¢, B¢, C¢, D¢. Chứng minh: SA SC SB SD SA SC SB SD + = + ¢ ¢ ¢ ¢ HD: Sử dụng tính chất tỉ số thể tích hình chóp Bài 6. Cho tứ diện đều SABC có cạnh là a. Dựng đường cao SH. a) Chứng minh SA ^ BC. ÔN TẬP KHỐI ĐA DIỆN Trần Sĩ Tùng Khối đa diện Trang 11 b) Tính thể tích và diện tích toàn phần của hình chóp SABC. c) Gọi O là trung điểm của SH. Chứng minh rằng OA, OB, OC đôi một vuông góc với nhau. HD: b) V = 3 2 12 a ; Stp = a2 3 . Bài 7. Cho hình chóp tứ giác đều SABCD có cạnh bên tạo với đáy một góc 600 và cạnh đáy bằng a. a) Tính thể tích khối chóp. b) Qua A dựng mặt phẳng (P) vuông góc với SC. Tính diện tích thiết diện tạo bởi (P) và hình chóp. HD: a) V = 3 6 6 a b) S = 2 3 3 a Bài 8. Cho hình chóp tứ giác đều SABCD có chiều cao SH = h và góc ở đáy của mặt bên là a. a) Tính diện tích xung quanh và thể tích khối chóp theo a và h. b) Cho điểm M di động trên cạnh SC. Tìm tập hợp hình chiếu của S xuống mp(MAB). HD: a) Sxq = 2 2 4 1 h tan tan a a - ; V = 3 2 4 3 1 h (tan )a - Bài 9. Trên cạnh AD của hình vuông ABCD cạnh a, người ta lấy điểm M với AM = x (0 £ x £ a) và trên nửa đường thẳng Ax vuông góc tại A với mặt phẳng của hình vuông, người ta lấy điểm S với SA = y (y > 0). a) Chứng minh hai mặt phẳng (SBA) và (SBC) vuông góc. b) Tính khoảng cách từ điểm M đến mp(SAC). c) Tính thể tích khối chóp SABCM. d) Với giả thiết x2 + y2 = a2. Tìm giá trị lớn nhất của thể tích với SABCM. e) I là trung điểm của SC. Tìm quĩ tích hình chiếu của I xuống MC khi M di động trên đoạn AD. HD: b) d = 2 2 x c) V = 1 6 ay x a( )+ d) Vmax = 3 1 3 24 a Bài 10. Cho hình chóp SABCD có đáy ABCD là hình chữ nhật có cạnh AB = a, cạnh bên SA vuông góc với đáy, cạnh bên SC hợp với đáy góc a và hợp với mặt bên SAB một góc b. a) Chứng minh: SC2 = 2 2 2 a cos sina b- . b) Tính thể tích khối chóp. HD: b) V = 3 2 23 a sin .sin (cos sin ) a b a b- Bài 11. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a .Cạnh bên SA =2a và vuông góc với mặt phẳng đáy. a) Tính diện tích toàn phần của hình chóp. b) Hạ AE ^ SB, AF ^ SD. Chứng minh SC ^ (AEF). Bài 12. Cho hình chóp tứ giác đều S.ABCD, có đáy ABCD là hình vuông cạnh bằng a và SA = SB = SC = SD = a. Tính diện tích toàn phần và thể tích khối chóp S.ABCD. Khối đa diện Trần Sĩ Tùng Trang 12 Bài 13. Cho hình chóp tứ giác S.ABCD có đáy là ABCD hình thang vuông tại A và D, AB = AD = a, CD = 2a. Cạnh bên SD ^ (ABCD) và SD= a . a) Chứng minh DSBC vuông. Tính diện tích DSBC. b) Tính khoảng cách từ A đến mặt phẳng (SBC). Bài 14. Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = a, CD = 2a. Cạnh bên SD ^ (ABCD), SD 3a= . Từ trung điểm E của DC dựng EK ^ SC (K SC)Ỵ . Tính thể tích khối chóp S.ABCD theo a và chứng minh SC ^ (EBK). Bài 15. Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thang vuông tại A và D. Biết rằng AB = 2a, AD = CD = a (a > 0). Cạnh bên SA =3a và vuông góc với đáy. a) Tính diện tích tam giác SBD. b) Tính thể tích của tứ diện tứ diện SBCD theo a. Bài 16. Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông ở B. Cạnh SA vuông góc với đáy. Từ A kẻ các đoạn thẳng AD ^ SB và AE ^ SC. Biết AB = a, BC = b, SA = c. a) Tính thể tích của khối chóp S.ADE. b) Tính khoảng cách từ điểm E đến mặt phẳng (SAB). Bài 17. Cho lăng trụ tam giác đều ABC.A¢B¢C¢, cạnh đáy bằng a, đường chéo của mặt bên BCC¢B¢ hợp với mặt bên ABB¢A¢ một góc a. a) Xác định góc a. b) Chứng minh thể tích lăng trụ là: 3 3 3 3 8 a sin sin a a . HD: a) ·C BI¢ ¢ với I¢ là trung điểm của A¢B¢ Bài 18. Cho lăng trụ tứ giác đều ABCD.A¢B¢C¢D¢, chiều cao h. Mặt phẳng (A¢BD) hợp với mặt bên ABB¢A¢ một góc a. Tính thể tích và diện tích xung quanh của lăng trụ. HD: V = 3 2 1h tan a - , Sxq = 2 24 1h tan a - . Bài 19. Cho lăng trụ đứng ABC.A¢B¢C¢, đáy ABC vuông tại A. Khoảng cách từ AA¢ đến mặt bên BCC¢B¢ bằng a, mp(ABC¢) cách C một khoảng bằng b và hợp với đáy góc a. a) Dựng AH ^ BC, CK ^ AC¢. Chứng minh: AH = a, ·CAC¢ = a, CK = b. b) Tính thể tích lăng trụ. c) Cho a = b không đổi, còn a thay đổi. Định a để thể tích lăng trụ nhỏ nhất. HD: b) V = 3 2 2 22 ab b asin sina a- c) a = arctan 2 2 Bài 20. Cho lăng trụ đều ABCD.A¢B¢C¢D¢ cạnh đáy bằng a. Góc giữa đường chéo AC¢ và đáy là 600. Tính thể tích và diện tích xung quanh hình lăng trụ. HD: V = a3 6 ; Sxq = 4a2 6 Bài 21. Cho lăng trụ tứ giác đều, có cạnh bên là h. Từ một đỉnh vẽ 2 đường chéo của 2 mặt bên kề nhau. Góc giữa 2 đường chéo ấy là a. Tính diện tích xung quanh hình lăng trụ. HD: Sxq = 4h2 1 cos cos a a - . Trần Sĩ Tùng Khối đa diện Trang 13 Bài 22. Cho lăng trụ tam giác đều ABc.A¢B¢C¢, cạnh đáy bằng a. Mặt phẳng (ABC¢) hợp với mp(BCC¢B¢) một góc a. Gọi I, J là hình chiếu của A lên BC và BC¢. a) Chứng minh ·AJI = a. b) Tính thể tích và diện tích xung quanh hình lăng trụ. HD: b) V = 3 2 3 4 3 a tan a - ; Sxq = 3a2 2 3 3tan a - . Bài 23. Cho lăng trụ xiên ABC.A¢B¢C¢, đáy là tam giác đều cạnh a, AA¢ = A¢B = A¢C = b. a) Xác định đường cao của lăng trụ vẽ từ A¢. Chứng minh mặt bên BCC¢B¢ là hình chữ nhật. b) Định b theo a để mặt bên ABB¢A¢ hợp với đáy góc 600. c) Tính thể tích và diện tích toàn phần theo a với giá trị b tìm được. HD: b) b = a 7 12 c) Stp = 2 7 3 21 6 a ( )+ Bài 24. Cho hình lăng trụ xiên ABC.A¢B¢C¢, đáy ABC là tam giác vuông cân đỉnh A. Mặt bên ABB¢A¢ là hình thoi cạnh a, nằm trên mặt phẳng vuông góc với đáy. Mặt bên ACC¢A¢ hợp với đáy góc nhị diện có số đo a (0 < a < 900). a) Chứng minh: ·A AB¢ = a. b) Tính thể tích lăng trụ. c) Xác định thiết diện thẳng qua A. Tính diện tích xung quanh lăng trụ. d) Gọi b là góc nhọn mà mp(BCC¢B¢) hợp với mặt phẳng đáy. Chứng minh: tanb = 2 tana. HD: b) V = 1 2 a3sina c) Sxq = a2(1 + sina + 21 sin a+ ) Bài 25. Cho lăng trụ xiên ABC.A¢B¢C¢ đáy là tam giác đều cạnh a. Hình chiếu của A¢ lên mp(ABC) trùng với tâm đường tròn (ABC). Cho ·BAA¢ = 450. a) Tính thể tích lăng trụ. b) Tính diện tích xung quanh lăng trụ. HD: a) V = 2 2 8 a b) Sxq = a2(1 + 2 2 ). Bài 26. Cho lăng trụ xiên ABC.A¢B¢C¢, đáy ABC là tam giác đều nội tiếp trong đường tròn tâm O. Hình chiếu của C¢ lên mp(ABC) là O. Khoảng cách giữa AB và CC¢ là d và số đo nhị diện cạnh CC¢ là 2j. a) Tính thể tích lăng trụ. b) Gọi a là góc giữa 2 mp(ABB¢A¢) và (ABC) (0 < a < 900). Tính j biết a + j = 900. HD: a) V = 3 3 2 2 3 1 d tan tan j j - b) tana = 2 1 3 1tan j - ; j = arctan 2 2 Bài 27. Cho lăng trụ xiên ABC.A¢B¢C¢ có đáy là tam giác vuông tại A, AB = a, BC = 2a. Mặt bên ABBA¢ là hình thoi, mặt bên BCC¢B¢ nằm trong mặt phẳng vuông góc với đáy, hai mặt này hợp với nhau một góc a. a) Tính khoảng cách từ A đến mp(BCC¢B¢). Xác định góc a. b) Tính thể tích lăng trụ. Khối đa diện Trần Sĩ Tùng Trang 14 HD: a) 3 2 a . Gọi AK là đường cao của DABC; vẽ KH ^ BB¢. ·AHK = a. b) V = 33 2 a cota . Bài 28. Cho hình hộp đứng ABCD.A¢B¢C¢D¢, đáy là hình thoi. Biết diện tích 2 mặt chéo ACC¢A¢, BDD¢B¢ là S1, S2. a) Tính diện tích xung quanh hình hộp. b) Biết ·BA D¢ = 1v. Tính thể tích hình hộp. HD: a) Sxq = 2 2 21 2S S+ b) V = 1 2 2 24 2 1 2 2 S S S S . - Bài 29. Cho hình hộp chữ nhật ABCD.A¢B¢C¢D¢, đường chéo AC¢ = d hợp với đáy ABCD một góc a và hợp với mặt bên BCC¢B¢ một góc b. a) Chứng minh: · ·CAC và AC Ba b¢ ¢= = . b) Chứng minh thể tích hình hộp là: V = d3sina.sinb cos( ).cos( )a b a b+ - c) Tìm hệ thức giữa a, b để A¢D¢CB là hình vuông. Cho d không đổi, a và b thay đổi mà A¢D¢CB luôn là hình vuông, định a, b để V lớn nhất. HD: c) 2(cos2a – sin2b) = 1 ; Vmax = 3 2 32 d khi a = b = 300 (dùng Côsi). Bài 30. Cho hình hộp ABCD.A¢B¢C¢D’ có đáy là hình thoi ABCD cạnh a, µA = 600. Chân đường vuông góc hà từ B¢ xuống đáy ABCD trùng với giao điểm 2 đường chéo của đáy. Cho BB¢ = a. a) Tính góc giữa cạnh bên và đáy. b) Tính thể tích và diện tích xung quanh hình hộp. HD: a) 600 b) V = 33 4 a ; Sxq = a2 15 . Bài 31. Cho hình hộp xiên ABCD.A¢B¢C¢D¢, đáy ABCD là hình thoi cạnh a và ·BAD = 600; A¢A = A¢B = A¢D và cạnh bên hợp với đáy góc a. a) Xác định chân đường cao của hình hộp vẽ từ A¢ và góc a. Tính thể tích hình hộp. b) Tính diện tích các tứ giác ACC¢A¢, BDD¢B¢. c) Đặt b = ·( )ABB A ABCD,¢ ¢ . Tính a biết a + b = 4 p . HD: a) Chân đường cao là tâm của tam giác đều ABD. b) SBDD¢B¢ = 2 3 3 a sina ; SACC¢A¢ = a 2tana c) a = arctan 17 3 4 - Chân thành cảm ơn các bạn đồng nghiệp và các em học sinh đã đọc tập tài liệu này. transitung_tv@yahoo.com
Tài liệu đính kèm: