1. Toạ độ góc
Là toạ độ xác định vị trí của một vật rắn quay quanh một trục cố định bởi góc (rad) hợp giữa mặt phẳng động gắn với vật và mặt phẳng cố định chọn làm mốc (hai mặt phẳng này đều chứa trục quay)
Lưu ý: Ta chỉ xét vật quay theo một chiều và chọn chiều dương là chiều quay của vật ≥ 0
2. Tốc độ góc
Là đại lượng đặc trưng cho mức độ nhanh hay chậm của chuyển động quay của một vật rắn quanh một trục
* Tốc độ góc trung bình:
* Tốc độ góc tức thời:
Lưu ý: Liên hệ giữa tốc độ góc và tốc độ dài v = r
CHƯƠNG I: ĐỘNG LỰC HỌC VẬT RẮN 1. Toạ độ góc Là toạ độ xác định vị trí của một vật rắn quay quanh một trục cố định bởi góc j (rad) hợp giữa mặt phẳng động gắn với vật và mặt phẳng cố định chọn làm mốc (hai mặt phẳng này đều chứa trục quay) Lưu ý: Ta chỉ xét vật quay theo một chiều và chọn chiều dương là chiều quay của vật Þ j ≥ 0 2. Tốc độ góc Là đại lượng đặc trưng cho mức độ nhanh hay chậm của chuyển động quay của một vật rắn quanh một trục * Tốc độ góc trung bình: * Tốc độ góc tức thời: Lưu ý: Liên hệ giữa tốc độ góc và tốc độ dài v = wr 3. Gia tốc góc Là đại lượng đặc trưng cho sự biến thiên của tốc độ góc * Gia tốc góc trung bình: * Gia tốc góc tức thời: Lưu ý: + Vật rắn quay đều thì + Vật rắn quay nhanh dần đều g > 0 + Vật rắn quay chậm dần đều g < 0 4. Phương trình động học của chuyển động quay * Vật rắn quay đều (g = 0) j = j0 + wt * Vật rắn quay biến đổi đều (g ≠ 0) w = w0 + gt 5. Gia tốc của chuyển động quay * Gia tốc pháp tuyến (gia tốc hướng tâm) Đặc trưng cho sự thay đổi về hướng của vận tốc dài () * Gia tốc tiếp tuyến Đặc trưng cho sự thay đổi về độ lớn của ( và cùng phương) * Gia tốc toàn phần Góc a hợp giữa và : Lưu ý: Vật rắn quay đều thì at = 0 Þ = 6. Phương trình động lực học của vật rắn quay quanh một trục cố định Trong đó: + M = Fd (Nm)là mômen lực đối với trục quay (d là tay đòn của lực) + (kgm2)là mômen quán tính của vật rắn đối với trục quay Mômen quán tính I của một số vật rắn đồng chất khối lượng m có trục quay là trục đối xứng - Vật rắn là thanh có chiều dài l, tiết diện nhỏ: - Vật rắn là vành tròn hoặc trụ rỗng bán kính R: I = mR2 - Vật rắn là đĩa tròn mỏng hoặc hình trụ đặc bán kính R: - Vật rắn là khối cầu đặc bán kính R: 7. Mômen động lượng Là đại lượng động học đặc trưng cho chuyển động quay của vật rắn quanh một trục L = Iw (kgm2/s) Lưu ý: Với chất điểm thì mômen động lượng L = mr2w = mvr (r là k/c từ đến trục quay) 8. Dạng khác của phương trình động lực học của vật rắn quay quanh một trục cố định 9. Định luật bảo toàn mômen động lượng Trường hợp M = 0 thì L = const Nếu I = const Þ g = 0 vật rắn không quay hoặc quay đều quanh trục Nếu I thay đổi thì I1w1 = I2w2 10. Động năng của vật rắn quay quanh một trục cố định 11. Sự tương tự giữa các đại lượng góc và đại lượng dài trong chuyển động quay và chuyển động thẳng Chuyển động quay (trục quay cố định, chiều quay không đổi) Chuyển động thẳng (chiều chuyển động không đổi) Toạ độ góc j Tốc độ góc w Gia tốc góc g Mômen lực M Mômen quán tính I Mômen động lượng L = Iw Động năng quay (rad) Toạ độ x Tốc độ v Gia tốc a Lực F Khối lượng m Động lượng P = mv Động năng (m) (rad/s) (m/s) (Rad/s2) (m/s2) (Nm) (N) (Kgm2) (kg) (kgm2/s) (kgm/s) (J) (J) Chuyển động quay đều: w = const; g = 0; j = j0 + wt Chuyển động quay biến đổi đều: g = const w = w0 + gt Chuyển động thẳng đều: v = cónt; a = 0; x = x0 + at Chuyển động thẳng biến đổi đều: a = const v = v0 + at x = x0 + v0t + Phương trình động lực học Dạng khác Định luật bảo toàn mômen động lượng Định lý về động (công của ngoại lực) Phương trình động lực học Dạng khác Định luật bảo toàn động lượng Định lý về động năng (công của ngoại lực) Công thức liên hệ giữa đại lượng góc và đại lượng dài s = rj; v =wr; at = gr; an = w2r Lưu ý: Cũng như v, a, F, P các đại lượng w; g; M; L cũng là các đại lượng véctơ CHƯƠNG II: DAO ĐỘNG CƠ I. DAO ĐỘNG ĐIỀU HOÀ 1. Phương trình dao động: x = Acos(wt + j) 2. Vận tốc tức thời: v = -wAsin(wt + j) luôn cùng chiều với chiều chuyển động (vật chuyển động theo chiều dương thì v>0, theo chiều âm thì v<0) 3. Gia tốc tức thời: a = -w2Acos(wt + j) luôn hướng về vị trí cân bằng 4. Vật ở VTCB: x = 0; |v|Max = wA; |a|Min = 0 Vật ở biên: x = ±A; |v|Min = 0; |a|Max = w2A 5. Hệ thức độc lập: a = -w2x 6. Cơ năng: Với 7. Dao động điều hoà có tần số góc là w, tần số f, chu kỳ T. Thì động năng và thế năng biến thiên với tần số góc 2w, tần số 2f, chu kỳ T/2 8. Động năng và thế năng trung bình trong thời gian nT/2 ( nÎN*, T là chu kỳ dao động) là: 9. Khoảng thời gian ngắn nhất để vật đi từ vị trí có toạ độ x1 đến x2 với và () 10. Chiều dài quỹ đạo: 2A 11. Quãng đường đi trong 1 chu kỳ luôn là 4A; trong 1/2 chu kỳ luôn là 2A Quãng đường đi trong l/4 chu kỳ là A khi vật đi từ VTCB đến vị trí biên hoặc ngược lại 12. Quãng đường vật đi được từ thời điểm t1 đến t2. Xác định: (v1 và v2 chỉ cần xác định dấu) Phân tích: t2 – t1 = nT + Dt (n ÎN; 0 ≤ Dt < T) Quãng đường đi được trong thời gian nT là S1 = 4nA, trong thời gian Dt là S2. Quãng đường tổng cộng là S = S1 + S2 * Nếu v1v2 ≥ 0 Þ * Nếu v1v2 < 0 Þ Lưu ý: + Nếu Dt = T/2 thì S2 = 2A + Trong một số trường hợp có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều sẽ đơn giản hơn. + Tốc độ trung bình của vật đi từ thời điểm t1 đến t2: với S là quãng đường tính như trên. 13. Bài toán tính quãng đường lớn nhất và nhỏ nhất vật đi được trong khoảng thời gian 0 < Dt < T/2. Vật có vận tốc lớn nhất khi qua VTCB, nhỏ nhất khi qua vị trí biên nên trong cùng một khoảng thời gian quãng đường đi được càng lớn khi vật ở càng gần VTCB và càng nhỏ khi càng gần vị trí biên. Sử dụng mối liên hệ giữa dao động điều hoà và chuyển đường tròn đều. Góc quét Dj = wDt. Quãng đường lớn nhất khi vật đi từ M1 đến M2 đối xứng qua trục sin (hình 1) Quãng đường nhỏ nhất khi vật đi từ M1 đến M2 đối xứng qua trục cos (hình 2) A -A M M 1 2 O P x x O 2 1 M M -A A P 2 1 P P Lưu ý: + Trong trường hợp Dt > T/2 Tách trong đó Trong thời gian quãng đường luôn là 2nA Trong thời gian Dt’ thì quãng đường lớn nhất, nhỏ nhất tính như trên. + Tốc độ trung bình lớn nhất và nhỏ nhất của trong khoảng thời gian Dt: và với SMax; SMin tính như trên. 13. Các bước lập phương trình dao động dao động điều hoà: * Tính w * Tính A * Tính j dựa vào điều kiện đầu: lúc t = t0 (thường t0 = 0) Lưu ý: + Vật chuyển động theo chiều dương thì v > 0, ngược lại v < 0 + Trước khi tính j cần xác định rõ j thuộc góc phần tư thứ mấy của đường tròn lượng giác (thường lấy -π < j ≤ π) 14. Các bước giải bài toán tính thời điểm vật đi qua vị trí đã biết x (hoặc v, a, Wt, Wđ, F) lần thứ n * Giải phương trình lượng giác lấy các nghiệm của t (Với t > 0 Þ phạm vi giá trị của k ) * Liệt kê n nghiệm đầu tiên (thường n nhỏ) * Thời điểm thứ n chính là giá trị lớn thứ n Lưu ý:+ Đề ra thường cho giá trị n nhỏ, còn nếu n lớn thì tìm quy luật để suy ra nghiệm thứ n + Có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều 15. Các bước giải bài toán tìm số lần vật đi qua vị trí đã biết x (hoặc v, a, Wt, Wđ, F) từ thời điểm t1 đến t2. * Giải phương trình lượng giác được các nghiệm * Từ t1 < t ≤ t2 Þ Phạm vi giá trị của (Với k Î Z) * Tổng số giá trị của k chính là số lần vật đi qua vị trí đó. Lưu ý: + Có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều. + Trong mỗi chu kỳ (mỗi dao động) vật qua mỗi vị trí biên 1 lần còn các vị trí khác 2 lần. 16. Các bước giải bài toán tìm li độ, vận tốc dao động sau thời điểm t một khoảng thời gian Dt. Biết tại thời điểm t vật có li độ x = x0. * Từ phương trình dao động điều hoà: x = Acos(wt + j) cho x = x0 Lấy nghiệm wt + j = a với ứng với x đang giảm (vật chuyển động theo chiều âm vì v < 0) hoặc wt + j = - a ứng với x đang tăng (vật chuyển động theo chiều dương) * Li độ và vận tốc dao động sau thời điểm đó Dt giây là hoặc 17. Dao động có phương trình đặc biệt: * x = a ± Acos(wt + j) với a = const Biên độ là A, tần số góc là w, pha ban đầu j x là toạ độ, x0 = Acos(wt + j) là li độ. Toạ độ vị trí cân bằng x = a, toạ độ vị trí biên x = a ± A Vận tốc v = x’ = x0’, gia tốc a = v’ = x” = x0” Hệ thức độc lập: a = -w2x0 * x = a ± Acos2(wt + j) (ta hạ bậc) Biên độ A/2; tần số góc 2w, pha ban đầu 2j. II. CON LẮC LÒ XO 1. Tần số góc: ; chu kỳ: ; tần số: Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và vật dao động trong giới hạn đàn hồi 2. Cơ năng: 3. * Độ biến dạng của lò xo thẳng đứng khi vật ở VTCB : Þ * Độ biến dạng của lò xo khi vật ở VTCB với con lắc lò xo nằm trên mặt phẳng nghiêng có góc nghiêng α: Þ + Chiều dài lò xo tại VTCB: lCB = l0 + Dl (l0 là chiều dài tự nhiên) + Chiều dài cực tiểu (khi vật ở vị trí cao nhất): lMin = l0 + Dl – A + Chiều dài cực đại (khi vật ở vị trí thấp nhất): lMax = l0 + Dl + A Þ lCB = (lMin + lMax)/2 + Khi A > Dl thì thời gian lò xo nén là thời gian ngắn nhất để vật đi từ vị trí x1 = Dl đến x2 = A. thời gian lò xo giãn là thời gian ngắn nhất để vật đi từ vị trí x1 = -Dl đến x2 = A. Lưu ý: Trong một dao động (một chu kỳ) lò xo nén 2 lần và giãn 2 lần 4. Lực kéo về hay lực hồi phục F = -kx = -mw2x Đặc điểm: * Là lực gây dao động cho vật. * Luôn hướng về VTCB * Biến thiên điều hoà cùng tần số với li độ 5. Lực đàn hồi là lực đưa vật về vị trí lò xo không biến dạng. Có độ lớn Fđh = kx* (x* là độ biến dạng của lò xo) * Với con lắc lò xo nằm ngang thì lực kéo về và lực đàn hồi là một (vì tại VTCB lò xo không biến dạng) * Với con lắc lò xo thẳng đứng hoặc đặt trên mặt phẳng nghiêng + Độ lớn lực đàn hồi có biểu thức: * Fđh = k|Dl + x| với chiều dương hướng xuống * Fđh = k|Dl - x| với chiều dương hướng lên + Lực đàn hồi cực đại (lực kéo): FMax = k(Dl + A) = FKmax (lúc vật ở vị trí thấp nhất) + Lực đàn hồi cực tiểu: * Nếu A < Dl Þ FMin = k(Dl - A) = FKMin * Nếu A ≥ Dl Þ FMin = 0 (lúc vật đi qua vị trí lò xo không biến dạng) Lực đẩy (lực nén) đàn hồi cực đại: FNmax = k(A - Dl) (lúc vật ở vị trí cao nhất) 6. Một lò xo có độ cứng k, chiều dài l được cắt thành các lò xo có độ cứng k1, k2, và chiều dài tương ứng là l1, l2, thì có: kl = k1l1 = k2l2 = 7. Ghép lò xo: * Nối tiếp Þ cùng treo một vật khối lượng như nhau thì: T2 = T12 + T22 * Song song: k = k1 + k2 + Þ cùng treo một vật khối lượng như nhau thì: 8. Gắn lò xo k vào vật khối lượng m1 được chu kỳ T1, vào vật khối lượng m2 được T2, vào vật khối lượng m1+m2 được chu kỳ T3, vào vật khối lượng m1 – m2 (m1 > m2) được chu kỳ T4. Thì ta có: và 9. Đo chu kỳ bằng phương pháp trùng phùng Để xác định chu kỳ T của một con lắc lò xo (con lắc đơn) người ta so sánh với chu kỳ T0 (đã biết) của một con lắc khác (T » T0). Hai con lắc gọi là trùng phùng khi chúng đi qua VTCB cùng một lúc theo cùng một chiều. Thời gian giữa hai lần trùng phùng Nếu T > T0 Þ q = nT = (n-1)T0. với n Î Z Nếu T < T0 Þ q = nT = (n+1)T0. III. CON LẮC ĐƠN 1. Tần số góc: ; chu kỳ: ; tần số: Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và a0 << 1 rad hay S0 << l 2. Lực hồi phục 3. Phương trình dao động: s = S0cos(wt + j) hoặc α = α0cos(wt + j) với s = αl, S0 = α0l Þ v = s’ = -wS0sin(wt + j) = -wlα0sin(wt + j) Þ a = v’ = -w2S0cos(wt + j) = -w2lα0cos(wt + j) = -w2s = -w2αl Lưu ý: S0 đóng vai trò như A còn s đóng vai trò như x 4. Hệ thức độc lập: * a = -w2s = -w2αl * * 5. Cơ năng: 6. Tại cùng một nơi con lắc đơn chiều dài l1 có chu kỳ T1, con lắc đơn chiều dài l2 có chu kỳ T2, con lắc đơn chiều dài l1 + l2 có chu kỳ T2,con lắc đơn chiều dài l1 - l2 (l1>l2) có chu kỳ T4. Thì ta có: và 7. Vận tốc và lực căng của sợi dây con lắc đơn v2 = 2gl(cosα – cosα0) và TC = mg(3cosα – 2cosα0) Lưu ý: Hai công thức này áp dụng đúng cho cả khi a > 100 8. Con lắc đơn có chu kỳ đúng T ở độ cao h1, nhiệt độ t1. Khi đưa tới độ cao h2, nhiệt độ t2 thì ta có: Với R = 6400km là bán kính Trái Đât, còn l là hệ số nở dài của thanh con lắc. 9. Con lắc đơn có chu kỳ đúng T ở độ sâu d1, nhiệt độ t1. Khi đưa tới độ sâu d2, nhiệt độ t2 thì ta có: Lưu ý: * Nếu DT > 0 thì đồng hồ chạy chậm (đồng hồ đếm giây sử dụng con lắc đơn) * Nếu DT < 0 thì đồng hồ chạy nhanh * Nếu DT = 0 thì đồng hồ chạy đúng * Thời gian chạy sai mỗi ngày (24h = 86400s): 10. Khi con lắc đơn chịu thêm tác dụng của lực phụ không đổi: Lực phụ không đổi thường là: * Lực quán tính: , độ lớn F = ma ( ) Lưu ý: + Chuyển động nhanh dần đều ( có hướng chuyển động) + Chuyển động chậm dần đều * Lực điện trường: , độ lớn F = |q|E (Nếu q > 0 Þ ; còn nếu q < 0 Þ ) Khi đó: gọi là trọng lực hiệu dụng hay trong lực biểu kiến (có vai trò như trọng lực ) gọi là gia tốc trọng trường hiệu dụng hay gia tốc trọng trường biểu kiến. Chu kỳ dao động của con lắc đơn khi đó: Các trường hợp đặc biệt: * có phương ngang: + Tại VTCB dây treo lệch với phương thẳng đứng một góc có: + * có phương thẳng đứng thì + Nếu hướng xuống thì + Nếu hướng lên thì IV. CON LẮC VẬT LÝ 1. Tần số góc: ; chu kỳ: ; tần số Trong đó: m (kg) là khối lượng vật rắn d (m) là khoảng cách từ trọng tâm đến trục quay I (kgm2) là mômen quán tính của vật rắn đối với trục quay 2. Phương trình dao động α = α0cos(wt + j) Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và a0 << 1rad V. TỔNG HỢP DAO ĐỘNG 1. Tổng hợp hai dao động điều hoà cùng phương cùng tần số x1 = A1cos(wt + j1) và x2 = A2cos(wt + j2) được một dao động điều hoà cùng phương cùng tần số x = Acos(wt + j). Trong đó: với j1 ≤ j ≤ j2 (nếu j1 ≤ j2 ) * Nếu Dj = 2kπ (x1, x2 cùng pha) Þ AMax = A1 + A2 ` * Nếu Dj = (2k+1)π (x1, x2 ngược pha) Þ AMin = |A1 - A2| 2. Khi biết một dao động thành phần x1 = A1cos(wt + j1) và dao động tổng hợp x = Acos(wt + j) thì dao động thành phần còn lại là x2 = A2cos(wt + j2). Trong đó: với j1 ≤ j ≤ j2 ( nếu j1 ≤ j2 ) 3. Nếu một vật tham gia đồng thời nhiều dao động điều hoà cùng phương cùng tần số x1 = A1cos(wt + j1; x2 = A2cos(wt + j2) thì dao động tổng hợp cũng là dao động điều hoà cùng phương cùng tần số x = Acos(wt + j). Chiếu lên trục Ox và trục Oy ^ Ox . Ta được: và với j Î[jMin;jMax] VI. DAO ĐỘNG TẮT DẦN – DAO ĐỘNG CƯỠNG BỨC - CỘNG HƯỞNG 1. Một con lắc lò xo dao động tắt dần với biên độ A, hệ số ma sát µ. Quãng đường vật đi được đến lúc dừng lại là: 2. Hiện tượng cộng hưởng xảy ra khi: f = f0 hay w = w0 hay T = T0 Với f, w, T và f0, w0, T0 là tần số, tần số góc, chu kỳ của lực cưỡng bức và của hệ dao động.
Tài liệu đính kèm: