I. TÍNH CÁC GÓC CỦA TAM GIÁC
Bài 201: Tính các góc của ΔABC nếu :
sin B C sin C A cos A B * ( ) ( ) ( ) 3 ( )
2
+ + + + + =
Do A + B C + = π
Nên: ( ) * sin A sinB cosC 3
2
⇔ + − =
+ − ⎛ ⎞
⇔ − ⎜ ⎟
⎝ ⎠
−
⇔ − =
−
⇔ − + =
⎛ ⎞ − −
− =
⇔ ⎜ ⎟ − + −
⎝ ⎠
⎛ ⎞ − −
⇔ − + = ⎜ ⎟
⎝ ⎠
⎧ −
⎪ ⎪ =
⇔ ⎨
⎪ − =
⎪ ⎩
= =
⇔
2
2
2
2
2
2
2
=
A B A B C 3
2sin cos 2cos 1
2 2 2
C A B C 1
2cos cos 2cos
2 2 2 2
C C A B
4 cos 4 cos cos 1 0
2 2 2
C A B A B
2cos cos 1 cos 0
2 2 2
C A B A B
2cos cos sin 0
2 2 2
C A B
2cos cos
2 2
A B
sin 0
2C
2cos cos0 1
2
A
2
⎧
⎪ ⎪ ⎪⎧ = π
⇔⎨ ⎨−
⎪ ⎪ ⎪ ⎩ = ⎩ =
⎧ π
⎪ ⎪ = =
⇔ ⎨
⎪ = π
⎪ ⎩
C
2 3
B
0 A B
2
A B
6
2
C
3
CHƯƠNG XI: NHẬN DẠNG TAM GIÁC I. TÍNH CÁC GÓC CỦA TAM GIÁC Bài 201: Tính các góc của ABCΔ nếu : ( ) ( ) ( ) ( )3sin B C sin C A cos A B * 2 + + + + + = Do A B C+ + = π Nên: ( ) 3* sin A sinB cosC 2 ⇔ + − = + − ⎛ ⎞⇔ − ⎜ ⎟⎝ ⎠ −⇔ − = −⇔ − + = − −⎛ ⎞ − = ⇔ − + −⎜ ⎟⎝ ⎠ − −⎛ ⎞⇔ − + =⎜ ⎟⎝ ⎠ −⎧ =⎪⎪⇔ ⎨ −⎪ =⎪⎩ = = ⇔ 2 2 2 2 2 2 2 = A B A B C 32sin cos 2 cos 1 2 2 2 C A B C 12cos cos 2 cos 2 2 2 2 C C A B4 cos 4 cos cos 1 0 2 2 2 C A B A B2cos cos 1 cos 0 2 2 2 C A B A B2cos cos sin 0 2 2 2 C A B2cos cos 2 2 A Bsin 0 2 C2cos cos 0 1 2 A 2 ⎧ π⎧⎪ =⎪ ⎪⇔⎨ ⎨−⎪ ⎪ == ⎩⎪⎩ π⎧ = =⎪⎪⇔ ⎨ π⎪ =⎪⎩ C 2 3 B A B0 2 A B 6 2C 3 Bài 202: Tính các góc của ABCΔ biết: ( ) 5cos2A 3 cos2B cos2C 0 (*) 2 + + + = Ta có: ( ) ( ) ( )2 5* 2cos A 1 2 3 cos B C cos B C 2 0⇔ − + + − + =⎡ ⎤⎣ ⎦ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ⇔ − − + = ⎡ ⎤⇔ − − + − −⎣ ⎦ ⎡ ⎤⇔ − − + − =⎣ ⎦ − =⎧ − =⎧⎪ ⎪⇔ ⇔⎨ ⎨ == −⎪ ⎪⎩⎩ ⎧ =⎪⇔ ⎨ = =⎪⎩ 2 2 2 2 2 0 0 4 cos A 4 3 cos A.cos B C 3 0 2cos A 3 cos B C 3 3cos B C 0 2cos A 3 cos B C 3sin B C 0 sin B C 0 B C 0 33 cos Acos A cos B C 22 A 30 B C 75 = Bài 203: Chứng minh ABCΔ có nếu : 0C 120= A B Csin A sinB sinC 2sin sin 2sin (*) 2 2 2 + + − ⋅ = Ta có A B A B C C A B C(*) 2sin cos 2sin cos 2sin sin 2sin 2 2 2 2 2 2 C A B C C A B A2cos cos 2sin cos 2cos 2sin sin 2 2 2 2 2 2 C A B C A Bcos cos sin cos cos 2 2 2 2 2 C A B A B A Bcos cos cos cos cos 2 2 2 2 2 C A B A B2cos cos cos cos cos 2 2 2 2 2 + −⇔ + = − +⇔ + = + −⎛ ⎞⇔ + = ⋅⎜ ⎟⎝ ⎠ − +⎡ ⎤⇔ + =⎢ ⎥⎣ ⎦ ⇔ = 2 B 2 + C 1cos 2 2 ⇔ = (do Acos 0 2 > và Bcos 0 2 > vì A B0 ; 2 2 2 π< < ) ⇔ = 0C 120 Bài 204: Tính các góc của CΔΑΒ biết số đo 3 góc tạo cấp số cộng và 3 3sin A sinB sinC 2 ++ + = Không làm mất tính chất tổng quát của bài toán giả sử A B C< < Ta có: A, B, C tạo 1 cấp số cộng nên A + C = 2B Mà A B C+ + = π nên B 3 π= Lúc đó: 3 3sin A sinB sinC 2 ++ + = 3 3sin A sin sinC 3 2 3sin A sinC 2 A C A C 32sin cos 2 2 2 B A C 32cos cos 2 2 2 3 A C 32. cos 2 2 2 C A 3cos cos 2 2 6 π +⇔ + + = ⇔ + = + −⇔ = −⇔ = ⎛ ⎞ −⇔ =⎜ ⎟⎜ ⎟⎝ ⎠ − π⇔ = = Do C > A nên có: CΔΑΒ − π π⎧ ⎧= =⎪ ⎪⎪ ⎪π π⎪ ⎪+ = ⇔ =⎨ ⎨⎪ ⎪π π⎪ ⎪= =⎪ ⎪⎩⎩ C A C 2 6 2 2C A A 3 6 B B 3 3 Bài 205: Tính các góc của ABCΔ nếu ( ) ( ) ⎧ + ≤⎪⎨ + + = +⎪⎩ 2 2 2b c a 1 sin A sin B sin C 1 2 2 Áp dụng định lý hàm cosin: 2 2b c acosA 2bc + −= 2 2 Do (1): nên co2 2b c a+ ≤ sA 0≤ Do đó: AA 2 4 π π≤ < π ⇔ ≤ < 2 2 π Vậy ( )A 2cos cos 2 4 2 π≤ = ∗ Mặt khác: sin A sinB sinC+ + B C B Csin A 2sin cos 2 2 + −= + A B Csin A 2cos cos 2 2 −= + 21 2 1 2 ⎛ ⎞≤ + ⋅⎜ ⎟⎜ ⎟⎝ ⎠ ( ) −⎛ ⎞≤⎜ ⎟⎝ ⎠ B Cdo * và cos 1 2 Mà sin A sinB sinC 1 2 do (2)+ + = + Dấu “=” tại (2) xảy ra ⎧ =⎪⎪⎪⇔ =⎨⎪ −⎪ =⎪⎩ sin A 1 A 2cos 2 2 B Ccos 1 2 π⎧ =⎪⎪⇔ ⎨ π⎪ = =⎪⎩ A 2 B C 4 Bài 206: (Đề thi tuyển sinh Đại học khối A, năm 2004) Cho ABCΔ không tù thỏa điều kiện ( )cos2A 2 2 cosB 2 2 cosC 3 *+ + = Tính ba góc của ABCΔ * Cách 1: Đặt M = cos2A 2 2 cosB 2 2 cosC 3+ + − Ta có: M = 2 B C B C2cos A 4 2 cos cos 4 2 2 + −+ − ⇔ M = 2 A B C2cos A 4 2 sin cos 4 2 2 −+ − Do Asin 0 2 > và B - Ccos 1 2 ≤ Nên 2 AM 2cos A 4 2 sin 4 2 ≤ + − Mặt khác: ABCΔ không tù nên 0 A 2 π< ≤ ⇒ ≤ ≤ ⇒ ≤2 0 cos A 1 cos A cos A Do đó: AM 2cosA 4 2 sin 4 2 ≤ + − 2 2 2 A AM 1 2sin 4 2 sin 2 2 A AM 4sin 4 2 sin 2 2 2 AM 2 2 sin 1 0 2 ⎛ ⎞⇔ ≤ − + −⎜ ⎟⎝ ⎠ ⇔ ≤ − + − ⎛ ⎞⇔ ≤ − − ≤⎜ ⎟⎝ ⎠ 4 Do giả thiết (*) ta có M=0 Vậy: 2 0 0 cos A cosA A 90B Ccos 1 2 B C 45 A 1sin 2 2 ⎧⎪ =⎪ ⎧ =−⎪ ⎪= ⇔⎨ ⎨ = =⎪⎩⎪⎪ =⎪⎩ * Cách 2: ( )* cos2A 2 2 cosB 2 2 cosC 3 0⇔ + + − = ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 B C B Ccos A 2 2 cos cos 2 0 2 2 A B Ccos A cosA cosA 2 2 sin cos 2 0 2 2 A A B CcosA cosA 1 1 2sin 2 2 sin cos 2 0 2 2 2 A B C B CcosA cosA 1 2 sin cos 1 cos 0 2 2 2 A B C BcosA cosA 1 2 sin cos sin 2 2 + −⇔ + − = −⇔ − + + − = −⎛ ⎞⇔ − + − + −⎜ ⎟⎝ ⎠ − −⎛ ⎞ ⎛⇔ − − − − −⎜ ⎟ ⎜⎝ ⎠ ⎝ − −⎛ ⎞⇔ − − − −⎜ ⎟⎝ ⎠ = ⎞ =⎟⎠ C 0 (*) 2 = Do ABCΔ không tù nên và cocos A 0≥ sA 1 0− < Vậy vế trái của (*) luôn ≤ 0 Dấu “=” xảy ra cosA 0 A B C2 sin cos 2 2 B Csin 0 2 ⎧⎪ =⎪ −⎪⇔ =⎨⎪ −⎪ =⎪⎩ ⎧ =⎪⇔ ⎨ = =⎪⎩ 0 0 A 90 B C 45 Bài 207: Chứng minh ABCΔ có ít nhất 1 góc 600 khi và chỉ khi sin A sinB sinC 3 (*) cosA cosB cosC + + =+ + Ta có: ( ) ( ) ( )(*) sin A 3 cosA sinB 3 cosB sinC 3 cosC 0⇔ − + − + − = sin A sin B sin C 0 3 3 3 A B A B2sin cos sin C 0 2 3 2 3 π π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞⇔ − + − + − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ + π − π⎛ ⎞ ⎛⇔ − + −⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎞ =⎟⎠ C A B C C2sin cos 2sin cos 0 2 2 3 2 2 6 2 6 C A B C2sin cos cos 0 2 6 2 2 6 ⎡ π π⎤ − π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞⇔ − − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ π ⎡ − π ⎤⎛ ⎞ ⎛ ⎞⇔ − − + − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ = π − π π⎛ ⎞ ⎛ ⎞ ⎛⇔ − = ∨ = − = −⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝ C A B Csin 0 cos cos cos 2 6 2 2 6 3 2 + ⎞⎟⎠ A B π − π + − + π +⇔ = ∨ = − ∨ = −C A B A B A B A 2 6 2 3 2 2 3 2 B π π⇔ = ∨ = ∨ =C A B 3 3 π 3 Bài 208: Cho ABCΔ và V = cos2A + cos2B + cos2C – 1. Chứng minh: a/ Nếu V = 0 thì ABCΔ có một góc vuông b/ Nếu V < 0 thì ABCΔ có ba góc nhọn c/ Nếu V > 0 thì ABCΔ có một góc tù Ta có: ( ) ( ) 21 1V 1 cos2A 1 cos2B cos 1 2 2 = + + + + − ( ) ( ) ( ) ( ) ( ) ( 2 2 2 1V cos2A cos2B cos C 2 ) V cos A B .cos A B cos C V cosC.cos A B cos C V cosC cos A B cos A B V 2cosCcosA cosB ⇔ = + + ⇔ = + − + ⇔ = − − + ⇔ = − − + +⎡ ⎤⎣ ⎦ ⇔ = − Do đó: a / V 0 cosA 0 cosB 0 cosC 0= ⇔ = ∨ = ∨ = ⇔ ABCΔ ⊥ tại A hay ABCΔ ⊥ tại B hay ABCΔ ⊥ tại C b / V 0 cosA.cosB.cosC 0 ⇔ ABCΔ có ba góc nhọn ( vì trong 1 tam giác không thể có nhiều hơn 1 góc tù nên không có trường hợp có 2 cos cùng âm ) c / V 0 cosA.cosB.cosC 0> ⇔ < cosA 0 cosB 0 cosC 0⇔ < ∨ < ∨ < ⇔ ABCΔ có 1 góc tù. II. TAM GIÁC VUÔNG Bài 209: Cho ABCΔ có +=B a ccotg 2 b Chứng minh ABCΔ vuông Ta có: B a ccotg 2 b += + +⇔ = = Bcos 2R sin A 2R sinC sin A sinC2 B 2R sin B sin Bsin 2 + − ⇔ = B A C Acos 2sin .cos 2 2 B Bsin 2sin .cos 2 2 C 2 B 2 −⇔ = >2 B B A C Bcos cos . cos (do sin 0) 2 2 2 2 −⇔ = >B A C Bcos cos (do cos 0) 2 2 2 − −⇔ = ∨ = ⇔ = + ∨ = + B A C B C A 2 2 2 2 A B C C A B π π⇔ = ∨ = ⇔ Δ Δ A C 2 2 ABC vuông tại A hay ABC vuông tại C Bài 210: Chứng minh ABCΔ vuông tại A nếu b c a cosB cosC sinBsinC + = Ta có: b c a cosB cosC sinBsinC + = ⇔ + = +⇔ = 2RsinB 2RsinC 2Rsin A cosB cosC sinBsinC sinBcosC sinCcosB sin A cosB.cosC sinBsinC ( )+⇔ = ⇔ = sin B C sin A cosB.cosC sinBsinC cosBcosC sinBsinC (do sin A 0)> ( ) ⇔ − ⇔ + = π⇔ + = ⇔ Δ cosB.cosC sin B.sinC 0 cos B C 0 B C 2 ABC vuông tại A = Bài 211: Cho ABCΔ có: A B C A B C 1cos cos cos sin sin sin (*) 2 2 2 2 2 2 2 ⋅ ⋅ − ⋅ ⋅ = Chứng minh ABCΔ vuông Ta có: ⇔ = + + − + −⎡ ⎤ ⎡⇔ + = − −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎤⎥⎦ A B C 1 A B C(*) cos cos cos sin sin sin 2 2 2 2 2 2 2 1 A B A B C 1 1 A B A Bcos cos cos cos cos sin 2 2 2 2 2 2 2 2 C 2 − −⎡ ⎤ ⎡ ⎤⇔ + = − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ − −⇔ + = − + = − +2 2 C A B C C A B Csin cos cos 1 sin cos sin 2 2 2 2 2 2 C C A B C C C C A Bsin cos cos cos 1 sin cos 1 sin cos sin 2 2 2 2 2 2 2 2 C 2 − −⇔ + = +2C C A B C C A B Csin cos cos cos cos cos sin 2 2 2 2 2 2 2 −⎡ ⎤ ⎡ ⎤⇔ − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎡ ⎤ ⎡ ⎤⇔ − − =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ C C C A B C Ccos sin cos cos sin cos 2 2 2 2 2 2 C C C A Bsin cos cos cos 0 2 2 2 2 −⇔ = ∨ = − −⇔ = ∨ = ∨ = π⇔ = ∨ = + ∨ = + π π π⇔ = ∨ = ∨ = C C C Asin cos cos cos 2 2 2 2 C C A B C Btg 1 2 2 2 2 2 C A B C B A C 2 4 C A B 2 2 2 B A Bài 212: Chứng minh ABCΔ vuông nếu: 3(cosB 2sinC) 4(sinB 2cosC) 15+ + + = Do bất đẳng thức Bunhiacốpki ta có: 2 23cosB 4sinB 9 16 cos B sin B 15+ ≤ + + = và 2 26sinC 8cosC 36 64 sin C cos C 10+ ≤ + + = nên: 3(cosB 2sinC) 4(sinB 2cosC) 15+ + + ≤ Dấu “=” xảy ra cosB sinB 4tgB 3 4 sinC cosC 4cotgC= 6 8 ⎧ ⎧= =⎪ ⎪⎪ ⎪⇔ ⇔⎨ ⎨⎪ ⎪=⎪ ⎪⎩ ⎩ 3 3 ⇔ = π⇔ + = tgB cotgC B C 2 ABC⇔ Δ vuông tại A. Bài 213: Cho ABCΔ có: sin2A sin2B 4sin A.sinB+ = Chứng minh ABCΔ vuông. Ta có: + =sin2A sin2B 4sin A.sinB [ ] [ ] ⇔ + − = − + − − ⇔ + = − + − 2sin(A B) cos(A B) 2 cos(A B) cos(A B) cos(A B) 1 sin(A B) cos(A B) [ ]⇔ − = − −cosC 1 sinC cos(A B) ⇔ − + = − −2cosC(1 sinC) (1 sin C).cos(A B) ⇔ − + = −2cosC(1 sinC) cos C.cos(A B) ⇔ = − + = −cosC 0 hay (1 sin C) cosC.cos(A B) (*) ⇔ =cosC 0 ( Do nên sinC 0> (1 sinC) 1− + < − Mà .Vậy (*) vô nghiệm.) cosC.cos(A B) 1− ≥ − Do đó ABCΔ vuông tại C III. TAM GIÁC CÂN Bài 214:Chứng minh nếu ABCΔ có CtgA tgB 2cotg 2 + = thì là tam giác cân. Ta có: CtgA tgB 2cotg 2 + = C2cossin(A B) 2 CcosA.cosB sin 2 C2cossinC 2 CcosA.cosB sin 2 C C C2sin cos 2cos 2 2 CcosA cosB sin 2 +⇔ = ⇔ = ⇔ = 2 ⇔ 2 C Csin cosA.cosB docos 0 2 2 ⎛ ⎞= >⎜ ⎟⎝ ⎠ ( ) ( ) ( ( ) ( ) ⇔ − = + + −⎡ ⎤⎣ ⎦ ⇔ − = − + − ⇔ − = ⇔ = 1 11 cosC cos A B cos A B 2 2 1 cosC cosC cos A B cos A B 1 ) A B ABC⇔ Δ cân tại C. Bài 215: Chứng minh ABCΔ cân nếu: 3 3A B Bsin .cos sin .cos 2 2 2 2 = A Ta có: 3 3A B Bsin .cos sin .cos 2 2 2 2 = A 2 2 A Bsin sin1 12 2 A A B Bcos cos cos cos 2 2 2 2 ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⇔ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ (do Acos 2 > 0 và Bcos 2 >0 ) 2 2 3 3 2 2 A A B Btg 1 tg tg 1 tg 2 2 2 2 A B A Btg tg tg tg 0 2 2 2 2 A B A B A Btg tg 1 tg tg tg .tg 0 (*) 2 2 2 2 2 2 ⎛ ⎞ ⎛ ⎞⇔ + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⇔ − + − = ⎛ ⎞ ⎡ ⎤⇔ − + + + =⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦ ⇔ =A Btg tg 2 2 ( vì 2 2A B A B1 tg tg tg tg 0 2 2 2 2 + + + > ) ⇔ =A B ABC⇔ Δ cân tại C Bài 216: Chứng minh ABCΔ cân nếu: ( )2 2 2 22 2cos A cos B 1 cotg A cotg B (*)sin A sin B 2+ = ++ Ta có: (*) 2 2 2 2 2 2 cos A cos B 1 1 1 2 sin A sin B 2 sin A sin B + ⎛ ⎞⇔ = +⎜ ⎟+ ⎝ ⎠− 2 2 2 2 2 2 cos A cos B 1 1 11 sin A sin B 2 sin A sin B + ⎛ ⎞⇔ + = +⎜ ⎟+ ⎝ ⎠ ⎛ ⎞⇔ = +⎜ ⎟+ ⎝ ⎠2 2 2 2 2 1 1 1 2sin A sin B sin A sin B ( )⇔ = + 22 2 2 24 sin A sin B sin A sin B ( )2 20 sin A sin B sin A sinB ⇔ = − ⇔ = Vậy ABCΔ cân tại C Bài 217: Chứng minh ABCΔ cân nếu: ( )Ca b tg atgA btgB (*) 2 + = + Ta có: ( )Ca b tg atgA btgB 2 + = + ( )⇔ + = +Ca b cotg atgA btgB 2 ⎡ ⎤ ⎡⇔ − + −⎢ ⎥ ⎢⎣ ⎦ ⎣ C Ca tgA cotg b tgB cotg 0 2 2 ⎤ =⎥⎦ + +⎡ ⎤ ⎡⇔ − + −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎤ =⎥⎦ A B Aa tgA tg b tgB tg 0 2 2 B − − ⇔ ++ + = A B B Aa sin bsin 2 2 0A B A Bcos A.cos cosB.cos 2 2 −⇔ = − =A B a bsin 0 hay 0 2 cos A cosB ⇔ = =2R sin A 2R sin BA B hay cos A cosB ⇔ = = ⇔ ΔA B hay tgA tgB ABC cân tại C IV. NHẬN DẠNG TAM GIÁC Bài 218: Cho ABCΔ thỏa: a cosB bcos A a sin A bsinB (*)− = − Chứng minh ABCΔ vuông hay cân Do định lý hàm sin: a 2Rsin A, b 2R sinB= = Nên (*) ( )2 22R sin A cosB 2RsinBcos A 2R sin A sin B⇔ − = − ( ) ( ) ( ) ( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2sin A cosB sinBcosA sin A sin B 1 1sin A B 1 cos2A 1 cos2B 2 2 1sin A B cos2B cos2A 2 sin A B sin A B sin B A sin A B 1 sin A B 0 sin A B 0 sin A B 1 A B A B 2 ⇔ − = − ⇔ − = − − − ⇔ − = − ⇔ − = − + −⎡ ⎤⎣ ⎦ ⇔ − − + =⎡ ⎤⎣ ⎦ ⇔ − = ∨ + = π⇔ = ∨ + = vậy ABCΔ vuông hay cân tại C Cách khác ( ) − = − ⇔ − = + − 2 2sin A cosB sin Bcos A sin A sin B sin A B (sin A sin B) ( sin A sin B) ( ) + − + −⇔ − = A B A B A B A Bsin A B ( 2sin cos ) (2 cos sin ) 2 2 2 2 ( ) ( ) ( ) ( ) ( ) ⇔ − = + − ⇔ − = ∨ + = π⇔ = ∨ + = sin A B sin A B sin A B sin A B 0 sin A B 1 A B A B 2 Bài 219 ABCΔ là tam giác gì nếu ( ) ( ) ( ) ( )2 2 2 2a b sin A B a b sin A B (*+ − = − + ) Ta có: (*) ( ) ( ) ( ) ( )2 2 2 2 2 2 24R sin A 4R sin B sin A B 4R sin A sin B sin A B⇔ + − = − + ( ) ( ) ( ) ( )2 2sin A sin A B sin A B sin B sin A B sin A B 0⇔ − − + + − + +⎡ ⎤ ⎡⎣ ⎦ ⎣ =⎤⎦ = ( )2 22sin A cosA sin B 2sin Bsin A cosB 0⇔ − + sin A cosA sinBcosB 0⇔ − + = (do và si ) sin A 0> nB 0> sin2A sin2B 2A 2B 2A 2B A B A B 2 ⇔ = ⇔ = ∨ = π − π⇔ = ∨ + = Vậy ABCΔ cân tại C hay ABCΔ vuông tại C. Bài 220: ABCΔ là tam giác gì nếu: 2 2a sin2B b sin2A 4abcosA sinB (1) sin2A sin2B 4sin A sinB (2) ⎧ + =⎨ + =⎩ Ta có: (1) 2 2 2 2 2 24R sin A sin 2B 4R sin Bsin 2A 16R sin A sin Bcos A⇔ + = ( ) 2 2 2 2 2 sin A sin2B sin Bsin2A 4sin A sin BcosA 2sin A sinBcosB 2sin A cosA sin B 4sin A sin BcosA sin A cosB sinBcosA 2sinBcosA (dosin A 0,sinB 0) sin A cosB sinBcosA 0 sin A B 0 A B ⇔ + = ⇔ + = ⇔ + = > ⇔ − = ⇔ − = ⇔ = 2 > Thay vào (2) ta được 2sin 2A 2sin A= ( ) 22sin A cosA 2sin A cosA sin A dosin A 0 tgA 1 A 4 ⇔ = ⇔ = > ⇔ = π⇔ = Do đó ABCΔ vuông cân tại C V. TAM GIÁC ĐỀU Bài 221: Chứng minh ABCΔ đều nếu: ( )bc 3 R 2 b c a (*)= + −⎡ ⎤⎣ ⎦ Ta có:(*) ( ) ( ) ( )2RsinB 2RsinC 3 R 2 2Rsin B 2RsinC 2Rsin A⇔ = + −⎡ ⎤⎣ ⎦ ( ) ( )⇔ = + −2 3 sin Bsin C 2 sin B sin C sin B C+ ( )⇔ = + − −2 3 sin BsinC 2 sin B sinC sin BcosC sinCcosB ⎡ ⎤ ⎡⇔ − − + − −⎢ ⎥ ⎢⎣ ⎦ ⎣ 1 3 1 32sin B 1 cosC sin C 2sin C 1 cosB sin B 0 2 2 2 2 ⎤ =⎥⎦ ⎡ π ⎤ ⎡ π ⎤⎛ ⎞ ⎛ ⎞⇔ − − + − − =⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦sin B 1 cos C sin C 1 cos B 0 (1)3 3 Do và sinB 0> 1 cos C 0 3 π⎛ ⎞− −⎜ ⎟⎝ ⎠ ≥ sin và C 0> 1 cos B 0 3 π⎛ ⎞− −⎜ ⎟⎝ ⎠ ≥ Nên vế trái của (1) luôn 0≥ Do đó, (1) cos C 1 3 cos B 1 3 ⎧ π⎛ ⎞− =⎜ ⎟⎪⎪ ⎝ ⎠⇔ ⎨ π⎛ ⎞⎪ − =⎜ ⎟⎪ ⎝ ⎠⎩ C B 3 π⇔ = = ⇔ ABCΔ đều. Bài 222: Chứng minh ABCΔ đều nếu 3 3 3 2 3sinBsinC (1) 4 a b ca ( a b c ⎧ =⎪⎪⎨ − −⎪ =⎪ − −⎩ 2) Ta có: (2) 3 2 2 3 3a a b a c a b c⇔ − − = − − 3 ( )2 3a b c b c⇔ + = + 3 ( ) ( ) ( )2 2 2 2 2 a b c b c b bc c a b bc c ⇔ + = + − + ⇔ = − + 2 c (do đl hàm cosin) 2 2 2 2b c 2bc cos A b c b⇔ + − = + − ⇔ = π⇔ = ⇔ = 2bc cos A bc 1cos A A 2 3 Ta có: (1) 4sinBsinC 3⇔ = ( ) ( )⇔ − − +⎡ ⎤⎣ ⎦2 cos B C cos B C 3= ( )⇔ − +⎡ ⎤⎣ ⎦2 cos B C cos A 3= ( ) π⎛ ⎞ ⎛ ⎞⇔ − + = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ 12cos B C 2 3 do (1) ta có A 2 3 ( )⇔ − = ⇔ =cos B C 1 B C Vậy từ (1), (2) ta có ABCΔ đều Bài 223: Chứng minh ABCΔ đều nếu: sin A sinB sinC sin2A sin2B sin2C+ + = + + Ta có: ( ) ( )sin2A sin2B 2sin A B cos A B+ = + − ( )2sinCcos A B 2sinC (1)= − ≤ Dấu “=” xảy ra khi: ( )cos A B 1− = Tương tự: sin2A sin2C 2sinB+ ≤ (2) Dấu “=” xảy ra khi: ( )cos A C 1− = Tương tự: sin2B sin2C 2sin A+ ≤ (3) Dấu “=” xảy ra khi: ( )cos B C 1− = Từ (1) (2) (3) ta có: ( ) ( )2 sin2A sin2B sin2C 2 sinC sinB sinA+ + ≤ + + Dấu “=” xảy ra ( ) ( ) ( ) − =⎧⎪⇔ − =⎨⎪ − =⎩ cos A B 1 cos A C 1 cos B C 1 A⇔ = =B C ⇔ ABCΔ đều Bài 224: Cho ABCΔ có: 2 2 2 1 1 1 1 (*) sin 2A sin 2B sin C 2cosA cosBcosC + + = Chứng minh ABCΔ đều Ta có: (*) ⇔ + +2 2 2 2 2 2sin 2B.sin 2C sin 2Asin 2C sin 2Asin 2B ( ) ( ) sin2A.sin2B.sin2C sin2A sin 2Bsin2C 2cosA cosBcosC 4sin A sinBsinC sin2A sin2Bsin2C = ⋅ = Mà: ( ) ( ) (= − − +⎡ ⎤⎣ ⎦4 sin A sin Bsin C 2 cos A B cos A B sin A B)+ )+ ( ) ( ) ( = − +⎡ ⎤⎣ ⎦ = + − = + + 2 cos A B cosC sin C 2sinC cosC 2cos A B sin A B sin 2C sin 2A sin 2B Do đó,với điều kiện ABCΔ không vuông ta có (*) 2 2 2 2 2 2sin 2Bsin 2C sin 2A sin 2C sin 2A sin 2B⇔ + + ( ) ( ) ( ) = + + = + + ⇔ − + − 2 2 2 2 2 sin 2A.sin 2B.sin 2C sin 2A sin 2B sin 2C sin 2A sin 2Bsin 2C sin 2Bsin 2A sin 2C sin 2Csin 2A sin 2B 1 1sin 2Bsin 2A sin 2Bsin 2C sin 2A sin 2B sin 2A sin 2C 2 2 ( )21 sin2Csin2A sin2Csin2B 0 2 + − = sin2Bsin2A sin2Bsin2C sin2A sin2B sin2A sin2C sin2A sin2C sin2Csin2B =⎧⎪⇔ =⎨⎪ =⎩ =⎧⇔ ⎨ =⎩ sin 2A sin 2B sin 2B sin 2C A B C⇔ = = ABC⇔ đều Bài 225: Chứng minh ABCΔ đều nếu: a cosA bcosB c cosC 2p (*) a sinB bsinC csin A 9R + + =+ + Ta có: a cosA bcosB ccosC+ + ( ) ( ) ( ) ( ) ( ) 2Rsin A cosA 2RsinBcosB 2RsinCcosC R sin2A sin2B sin2C R 2sin A B cos A B 2sinCcosC 2RsinC cos A B cos A B 4RsinCsin A sinB = + + = + + ⎡ ⎤= + − +⎣ ⎦ ⎡ ⎤= − − + =⎣ ⎦ Cách 1: asinB bsinC csin A+ + ( ) ( )2 2 23 2R sin A sinB sinBsinC sinCsin A 2R sin A sin Bsin C do bđtCauchy = + + ≥ Do đó vế trái : 3a cosA bcosB c cosC 2 sin A sinBsinC a sinB bsinC csin A 3 + + ≤+ + (1) Mà vế phải: ( )+ += = + +2p a b c 2 sin A sin B sin C 9R 9R 9 32 sin A sinBsinC 3 ≥ (2) Từ (1) và (2) ta có ( * ) đều sin A sinB sinC ABC⇔ = = ⇔ Δ Cách 2: Ta có: (*) 4Rsin A sinBsinC a b c a sinB bsinC csin A 9R + +⇔ =+ + a b c4R a b c2R 2R 2R b c ca 9Ra b 2R 2R 2R ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⇔ =⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ( ) ( )9abc a b c ab bc ca⇔ = + + + + Do bất đẳng thức Cauchy ta có 3 2 2 23 a b c abc ab bc ca a b c + + ≥ + + ≥ Do đó: ( ) ( )a b c ab bc ca 9abc+ + + + ≥ Dấu = xảy ra a b c⇔ = = ABC⇔ Δ đều. Bài 226: Chứng minh ABCΔ đều nếu A ( )B Ccot gA cot gB cot gC tg tg tg * 2 2 2 + + = + + Ta có: ( )sin A B sinCcot gA cot gB sin A sinB sin A sinB ++ = = 2 sinC sin A sinB 2 ≥ +⎛ ⎞⎜ ⎟⎝ ⎠ (do bđt Cauchy) 2 2 2 C C C2sin cos 2sin 2 2 2 A B A B C Asin .cos cos cos 2 2 2 = = B 2 + − − C2tg 2 ≥ (1) Tương tự: Bcot gA cot gC 2tg 2 + ≥ (2) Acot gB cot gC 2tg 2 + ≥ (3) Từ (1) (2) (3) ta có ( ) A B C2 cot gA cot gB cot gC 2 tg tg tg 2 2 2 ⎛ ⎞+ + ≥ + +⎜ ⎟⎝ ⎠ Do đó dấu “=” tại (*) xảy ra − − −⎧ = =⎪⇔ ⎨⎪ = =⎩ =A B A C B Ccos cos cos 1 2 2 2 sin A sin B sin C A B C ABC đều. ⇔ = = ⇔ Δ BÀI TẬP 1. Tính các góc của ABCΔ biết: a/ = + − 3cos A sin B sin C 2 (ĐS: 2B C ,A 6 3 π π= = = ) b/ si (ĐS: n6A sin6B sin6C 0+ + = A B C 3 π= = = ) c/ si n5A sin5B sin5C 0+ + = 2. Tính góc C của ABCΔ biết: a/ ( ) ( )1 cot gA 1 cot gB 2+ + = b/ 2 2 9 A,Bnhọn sin A sin B sinC ⎧⎪⎨ + =⎪⎩ 3. Cho ABCΔ có: ⎧ + + <⎨ + + =⎩ 2 2 2cos A cos B cos C 1 sin 5A sin 5B sin 5C 0 Chứng minh Δ có ít nhất một góc 36 0. 4. Biết . Chứng minh 2 2 2sin A sin B sin C m+ + = a/ m thì 2= ABCΔ vuông b/ m thì 2> ABCΔ nhọn c/ m thì 2< ABCΔ tù. 5. Chứng minh ABCΔ vuông nếu: a/ b ccosB cosC a ++ = b/ b c a cosB cosC sinBsinC + = c/ s in A sinB sinC 1 cosA cosB cosC+ + = − + + d/ ( ) ( )2 2 2 1 cos B Cb c b 1 cos2B ⎡ ⎤− −− ⎣ ⎦= − 6. Chứng minh ABCΔ cân nếu: a/ 2 2 1 cosB 2a c sinB a c + += − b/ + + =+ − sin A sin B sin C A Bcot g .cot g sin A sin B sin C 2 2 c/ 2tgA 2tgB tgA.tg B+ = d/ C Ca cot g tgA b tgB cot g 2 2 ⎛ ⎞ ⎛− = −⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎞⎟⎠ e/ ( ) C Bp b cot g ptg 2 2 − = f/ ( )Ca b tg atgA btgB 2 + = + 7. ABCΔ là Δ gì nếu: a/ ( ) A BatgB btgA a b tg 2 ++ = + b/ c c cos2B bsin2B= + c/ + +sin 3A sin 3B sin 3C 0= d/ ( ) ( )4S a b c a c b= + − + − 8. Chứng minh ABCΔ đều nếu a/ ( )2 a cosA bcosB ccosC a b c+ + = + + b/ ( )= + +2 3 3 33S 2R sin A sin B sin C c/ si n A sinB sinC 4sin AsinBsinC+ + = d/ a b c 9Rm m m 2 + + = với là 3 đường trung tuyến a bm ,m ,mc Th.S Phạm Hồng Danh – TT luyện thi Vĩnh Viễn
Tài liệu đính kèm: